
UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 1

Processes

The term “process” was first used by the designers of the multics system in the

1960’s. A process is a program in execution and process execution must progress

in sequential fashion.

Process exits in a limited span of time.

Two or more process could be executing the same program, each using their

own data and resource.

The process memory is divided into four sections for efficient operation:

 The text category is composed of integrated program code, which is read

from fixed storage when the program is launched.

 The data class is made up of global and static variables, distributed and

executed before the main action.

 Heap is used for flexible, or dynamic memory allocation and is managed

by calls to new, delete, malloc, free, etc.

 The stack is used for local variables. The space in the stack is reserved for

local variables when it is announced.

Process State

When process executes, it changes state. Process state is defined as the

current activity of the process. Process state contains five states. Each process is

one of the following states.

new: The process is being created.

running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

ready: The process is waiting to be assigned to a process.

terminated: The process has finished execution.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 2

Diagram of Process State

Dispatching

The assignment of the CPU to the first process on the ready list is called

dispatching and is performed by a system entity called the Dispatcher.

Process Control Block (PCB)

The manifestation of a process in OS is a PCB or Process descriptor. Each

process contains the PCB. PCB is a Data Structure containing certain important

information about the process including,

 Unique identification of the process

 A pointer to the process’s parent

 Process state

 Program counter

 CPU register

 Memory management information

 Account information

Pointer

Pointer points to the another PCB. Pointer is used for maintaining the

scheduling list.

Process state

Process state may be new, ready, running, waiting and so on.

Program counter

It indicates the address of the next instruction to be executed.

CPU register

It includes general purpose register, stack pointer, and accumulators etc.

Memory management Informtion

locations including value of base and limit registers, page tables and other

virtual memory information.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 3

Accounting information

the amount of CPU and real time used, time limits, account numbers, job or

process numbers etc.

I/O status information

List of I/O devices allocated to this process, a list of open files, and so on.

CPU Switch From Process to Process

Process Scheduling Queues

Scheduling is to decide which process to execute and when. The objective

of multi-program is, to have some process running at all times, so as to maximize

CPU utilization. In Timesharing, switch the CPU frequently that users can interact

with the program while it is running.

Scheduling Queues

1. job queue -The processes enter the system, they are put into a job queue.

This Queue consists of all processes in the system.

2. Ready queue – set of all processes residing in main memory, and are ready

and waiting to execute are kept on a list is called Ready Queue. This queue

is generally stored as linked list. A ready queue header contains two

pointers.(Head, Tail).

3. Device queues – set of processes waiting for an I/O device. Each device

has its own queue.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 4

Ready Queue and Various I/O Device Queues

Representation of Process Scheduling

A new process is initially put in the ready queue. It waits in the ready queue

until it is selected for execution. Once a process is allocated CPU, the following

events may occur.

 A process could issue an I/O request, and then be placed in an I/O queue.

 A process could create a new process

 The process could be removed forcibly from CPU, as a result of an

interrupt and put back in the ready queue.

 When process terminates, it is removed from all queues.

 PCB and its other resources are de-allocated.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 5

Schedulers

A process migrates between the various scheduling queues throughout its

lifetime. The OS must select, for scheduling process. The selection process is

carried out by a scheduler.

Long-term scheduler (or job scheduler)

 Selects which processes from this pool and loads them into memory for

execution.

 It may take long time.

 The long-term scheduler executes less frequently.

 The long-term scheduler controls degree of multiprogramming.

Short-term scheduler (or CPU scheduler)

 Selects which process should be ready to execute and allocates the CPU.

 The STS must select a new process for the CPU frequently.

 STS is executed at least once every 100 milliseconds.

 The STS must be fast.

 If it takes 10 milliseconds to decide to execute a process for 100 ms, then 9

% of CPU is used (or wasted) simply for scheduling work.

Medium-term scheduler

Some OS introduced a medium-term scheduler using swapping. It can be

advantageous, to remove the processes from the memory and reduce the

multiprogramming. At some later time, the process can be reintroduced into main

memory and its execution can be continued when it left off. This scheme is called

“Swapping”.

Swapping improves the process mix (I/O and CPU), when main memory is

unavailable.

 The long-term scheduler should make a careful selection. Because of the

longer interval b/w executions, the LTS can afford to take more time to

select a process for execution.

 The processes are either I/O bound or CPU bound.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 6

 An I/O bound process spends more time doing I/O than it spends doing

computation.

 A CPU bound process spends most of the time doing computation.

 The LT scheduler should select a good process mix of I/O-bound and CPU-

bound processes.

 If all the processes are I/O bound, the ready queue will be empty.

 If all the processes are CPU bound, the I/O queue will be empty, the

devices will go unused and the system will be unbalanced.

 Best performance by best combination of CPU-bound and I/O-bound

process.

Context Switch

 Context switch is a task of switching the CPU to another process by saving

the state of old process and loading the saved state for the new process.

 When a context switch occurs, the kernal saves the context of the old

process in its PCB and loads the saved context of the new process

scheduled to run.

 Context-switch time is overhead; the system does no useful work while

switching.

 Context-switch time is highly dependent on hardware support.

 Typical range from 1 to 1000 microseconds.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 7

Operations on Processes

The processes in the system can execute concurrently. The OS must

provide a mechanism for creation and termination.

(i)Process creation

 A process may create several new processes.

 Processes are created and deleted dynamically.

 Process which creates another process is called a parent process; the

created process is called a child process.

 Child process may create another sub process.

 Syntax for creating new process is: CREATE (process ID, attributes).

 A process needs certain resources (CPU time, memory, files, I/O devices)

to accomplish its task.

 When a process creates a sub processes, that sub process may be to obtain

its resource directly from the OS, or it may be constrained to a subset of

resources of the parent process.

 When a process creates a new process, two possibilities in terms of

execution and resource sharing.

 Resource sharing possibilities

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 Execution possibilities

 Parent and children execute concurrently.

 Parent waits until children terminate.

 There are also two possibilities in terms of the address space of the new

process:

 The child process is a duplicate of the parent process.

 Child process has a program loaded into it.

Example

In UNIX:

 Each process is identified by its process identifier.

 fork system call creates new process.

 exec system call used after a fork to replace the process’ memory space

with a new program.

 The new process is a copy of the original process.

 The exec system call is used after a fork by one of the two processes to

replace the process memory space with a new program.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 8

DEC VMS:

 Creates a new process, loads a specified program into that process, and

starts it running.

WINDOWS NT supports both models:

 Parent address space can be duplicated or

 parent can specify the name of a program for the OS to load into the

address space of the new process.

(ii)Process Termination

 Process executes last statement and asks the operating system to decide it

(exit).

 Output data from child to parent (via wait).

 Process’ resources are de-allocated by operating system.

 Parent may terminate the execution of children processes (abort).

 Child has exceeded allocated resources.

 Task assigned to child is no longer required.

 Parent is exiting, Operating system does not allow child to continue if its

parent terminates.

 Cascading termination. (All children terminated).

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 9

COOPERATING PROCESSES

 The concurrent process executing in the OS may be either independent

process or cooperating process.

 Independent process cannot affect or be affected by the execution of

another process.

 Cooperating process can affect or be affected by the execution of another

process.

Advantages of process cooperation

1. Information sharing: several users may be interest in the same piece of

information.

2. Computation speed-up: If we want a particular task to run faster, we must

break it into subtasks and run in parallel.

3. Modularity: Constructing the system in modular fashion, dividing the

system functions into separate process.

4. Convenience: User will have many tasks to work in parallel (Editing,

compiling, printing).

Processes can communicate with each other through both:

 Shared Memory

 Message passing

The following figure shows a basic structure of communication between

processes via the shared memory method and via the message passing method.

(i) Shared Memory

Communication between processes using shared memory requires processes

to share some variable, and it completely depends on how the programmer will

implement it.

One way of communication using shared memory can be imagined like this:

Suppose process1 and process2 are executing simultaneously, and they share

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 10

some resources or use some information from another process. Process1

generates information about certain computations or resources being used and

keeps it as a record in shared memory. When process2 needs to use the shared

information, it will check in the record stored in shared memory and take note of

the information generated by process1 and act accordingly.

Processes can use shared memory for extracting information as a record from

another process as well as for delivering any specific information to other

processes.

Ex: Producer-Consumer problem

A producer process produces information that is consumed by a consumer

process. For example, a print program produces characters that are consumed by

the printer driver.

A producer can produce one item while the consumer is consuming another

item. The Producer and Consumer must be synchronized. The consumer does not

try to consume an item, the consumer must wait until an item is produced.

Unbounded-Buffer

 no practical limit on the size of the buffer.

 Producer can produce any number of items.

 Consumer may have to wait

Bounded-Buffer

 assumes that there is a fixed buffer size.

Bounded-Buffer – Shared-Memory Solution:

Shared data

#define BUFFER_SIZE 10

Typedef struct

{

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 11

Bounded-Buffer – Producer Process:

item next Produced;

while (1)

{

 while (((in + 1) % BUFFER_SIZE) == out); /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

}

Bounded-Buffer – Consumer Process:

item next Consumed;

while (1)

{

 while (in == out); /* do nothing */

 next Consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

}

(ii) Messaging Passing Method

In this method, processes communicate with each other without using any

kind of shared memory. If two processes want to communicate with each other,

they proceed as follows

:

 Establish a communication link (if a link already exists, no need to

establish it again.)

 Start exchanging messages using basic primitives.

 The message size can be of fixed size or of variable size. If it is of fixed

size, it is easy for an OS designer but complicated for a programmer and if

it is of variable size then it is easy for a programmer but complicated for the

OS designer.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 12

 Cooperating process to communicate with each other via an inter process

communication (IPC).

 IPC provides a Mechanism to allow processes to communicate and to

synchronize their actions.

 If P and Q want to communicate, a communication link exists between them

and exchange messages via send/receive. OS provides this facility.

 IPC facility provides two operations:

Send (message) – message size fixed or variable.

Receive (message)

 Implementation of communication link by following.

o physical (e.g., shared memory, hardware bus)

o logical (e.g., logical properties)

Methods for logical implementation of a link

i. Direct communication.

ii. Indirect communication.

Direct Communication

 Each processes must name each other explicitly:

o Send (P, message) – send a message to process P.

o Receive (Q, message) – receive a message from process Q.

 Links are established automatically.

 A link is associated with exactly one pair of communicating processes.

 Between each pair there exists exactly one link.

 The link may be unidirectional, but is usually bi-directional.

 This exhibits both symmetry and asymmetry in addressing

Symmetry:

Both the sender and the receiver processes must name the other to

communicate.

Asymmetry:

Only sender names the recipient, the recipient is not required to name the

sender. The send and receive primitives are as follows.

o Send (P, message)– send a message to process P.

o Receive (id, message)– receive a message from any process.

Disadvantage of direct communication

Changing a name of the process creates problems.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 13

Indirect Communication

 The messages are sent and received from mailboxes (also referred to as

ports).

 A mailbox is an object

 Process can place messages.

 Process can remove messages.

 Two processes can communicate only if they have a shared mailbox.

 Primitives are defined as:

send (A, message) – send a message to mailbox A

receive (A, message) – receive a message from mailbox A.

 A mailbox may be owned either by a process or by the OS.

 If the mailbox is owned by a process, then we distinguish b/w the owner

(who can only receive msg through this mailbox) and the user (who can

only send msg to the mailbox).

 A mailbox may be owned by the OS is independent and provide a

mechanism,

o create a mailbox

o receive messages through mailbox

o destroy a mail box.

Mailbox sharing problem

The processes P1, P2, and P3 all share mailbox A. Processes P1, sends; P2

and P3 receive the message from A. Who gets a message?

Solutions

 Allow a link to be associated with at most two processes.

 Allow only one process at a time to execute a receive operation.

 Allow the system to select arbitrarily the receiver. The system may identify

the receiver to the sender.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 14

Synchronization

 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous. Non-blocking is considered

asynchronous.

 send and receive primitives may be either blocking or non-blocking.

Blocking send

The sending process is blocked until the message is received by the

receiving process or by the mailbox.

Non-blocking send

The sending process sends the message and resumes operation.

Blocking receive

The receiver blocks until a message is available.

Non-blocking receive

The receiver receives either a valid message or a null.

Buffering

 A link has some capacity that determines the number of messages that can

reside in it temporarily.

 Queue of messages is attached to the link; implemented in one of three

ways.

Zero capacity

o The link cannot have any messages in it.

o Sender must wait for receiver.

Bounded capacity

o finite length of n messages

o Sender must wait if link full.

Unbounded capacity

o infinite length

o Sender never waits.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 15

CPU scheduling

CPU scheduling is the process of deciding which process will own the

CPU to use while another process is suspended. The main function of the CPU

scheduling is to ensure that whenever the CPU remains idle, the OS has at least

selected one of the processes available in the ready-to-use line.

In Multiprogramming, if the long-term scheduler selects multiple I / O

binding processes then most of the time, the CPU remains an idle. The function

of an effective program is to improve resource utilization.

If most operating systems change their status from performance to waiting

then there may always be a chance of failure in the system. So in order to

minimize this excess, the OS needs to schedule tasks in order to make full use of

the CPU and avoid the possibility of deadlock.

Objectives of Process Scheduling Algorithm

 Utilization of CPU at maximum level. Keep CPU as busy as possible.

 Allocation of CPU should be fair.

 Throughput should be Maximum. i.e. Number of processes that complete

their execution per time unit should be maximized.

 Minimum turnaround time, i.e. time taken by a process to finish execution

should be the least.

 There should be a minimum waiting time and the process should not

starve in the ready queue.

 Minimum response time. It means that the time when a process produces

the first response should be as less as possible.

Terminologies

 Arrival Time: Time at which the process arrives in the ready queue.

 Completion Time: Time at which process completes its execution.

 Burst Time: Time required by a process for CPU execution.

 Turn Around Time: Time Difference between completion time and

arrival time.

 Turn Around Time = Completion Time – Arrival Time

 Waiting Time(W.T): Time Difference between turn around time and

burst time.

Waiting Time = Turn Around Time – Burst Time

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 16

THE SCHEDULING CRITERIA

CPU utilization:

The main purpose of any CPU algorithm is to keep the CPU as busy as

possible. Theoretically, CPU usage can range from 0 to 100 but in a real-time

system, it varies from 40 to 90 percent depending on the system load.

Throughput:

The average CPU performance is the number of processes performed and

completed during each unit. This is called throughput. The output may vary

depending on the length or duration of the processes.

Turn round Time:

For a particular process, the important conditions are how long it takes to

perform that process. The time elapsed from the time of process delivery to

the time of completion is known as the conversion time. Conversion time is

the amount of time spent waiting for memory access, waiting in line, using

CPU, and waiting for I / O.

Waiting Time:

The Scheduling algorithm does not affect the time required to complete

the process once it has started performing. It only affects the waiting time of

the process i.e. the time spent in the waiting process in the ready queue.

Response Time:

In a collaborative system, turn around time is not the best option. The

process may produce something early and continue to computing the new

results while the previous results are released to the user. Therefore another

method is the time taken in the submission of the application process until the

first response is issued. This measure is called response time.

Types of CPU Scheduling Algorithms

There are mainly two types of scheduling methods:

Preemptive Scheduling:

Preemptive scheduling is used when a process switches from running state

to ready state or from the waiting state to the ready state.

Non-Preemptive Scheduling:

Non-Preemptive scheduling is used when a process terminates , or when a

process switches from running state to waiting state.

https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 17

1. First Come First Serve Scheduling:

FCFS considered to be the simplest of all operating system scheduling

algorithms. First come first serve scheduling algorithm states that the process

that requests the CPU first is allocated the CPU first and is implemented by

using FIFO queue.

Characteristics:

 FCFS supports non-preemptive and preemptive CPU scheduling

algorithms.

 Tasks are always executed on a First-come, First-serve concept.

 FCFS is easy to implement and use.

 This algorithm is not much efficient in performance, and the wait time is

quite high.

Advantages:

 Easy to implement

 First come, first serve method

Disadvantages:

 FCFS suffers from Convoy effect.

 The average waiting time is much higher than the other algorithms.

 FCFS is very simple and easy to implement and hence not much efficient.

https://www.geeksforgeeks.org/queue-data-structure/

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 18

2. Shortest Job First(SJF) Scheduling:

Shortest job first (SJF) is a scheduling process that selects the waiting

process with the smallest execution time to execute next. This scheduling method

may or may not be preemptive. Significantly reduces the average waiting time

for other processes waiting to be executed. The full form of SJF is Shortest Job

First.

Characteristics:

 Shortest Job first has the advantage of having a minimum average waiting

time among all operating system scheduling algorithms.

 It is associated with each task as a unit of time to complete.

 It may cause starvation if shorter processes keep coming. This problem

can be solved using the concept of ageing.

Advantages:

 As SJF reduces the average waiting time thus, it is better than the first

come first serve scheduling algorithm.

 SJF is generally used for long term scheduling

Disadvantages:

 One of the demerit SJF has is starvation.

 Many times it becomes complicated to predict the length of the upcoming

CPU request

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 19

3. Longest Job First(LJF) Scheduling:

This is just opposite of shortest job first (SJF), as the name suggests this

algorithm is based upon the fact that the process with the largest burst time is

processed first. Longest Job First is non-preemptive in nature.

Characteristics:

 Among all the processes waiting in a waiting queue, CPU is always

assigned to the process having largest burst time.

 If two processes have the same burst time then the tie is broken

using FCFS i.e. the process that arrived first is processed first.

 LJF CPU Scheduling can be of both preemptive and non-preemptive

types.

Advantages:

 No other task can schedule until the longest job or process executes

completely.

 All the jobs or processes finish at the same time approximately.

Disadvantages:

 Generally, the LJF algorithm gives a very high average waiting

time and average turn-around time for a given set of processes.

 This may lead to convoy effect.

4. Priority Scheduling:

Preemptive Priority CPU Scheduling Algorithm is a pre-emptive

method of CPU scheduling algorithm that works based on the priority of a

process. In this algorithm, the editor sets the functions to be as important,

meaning that the most important process must be done first. In the case of any

conflict, that is, where there are more than one processor with equal value, then

the most important CPU planning algorithm works on the basis of the FCFS

Characteristics:

 Schedules tasks based on priority.

 When the higher priority work arrives while a task with less priority is

executed, the higher priority work takes the place of the less priority one

and

 The latter is suspended until the execution is complete.

 Lower is the number assigned, higher is the priority level of a process.

Advantages:

 The average waiting time is less than FCFS

 Less complex

https://www.geeksforgeeks.org/program-for-fcfs-cpu-scheduling-set-1/

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 20

Disadvantages:

 One of the most common demerits of the Preemptive priority CPU

scheduling algorithm is the Starvation Problem. This is the problem in

which a process has to wait for a longer amount of time to get scheduled

into the CPU. This condition is called the starvation problem.

5. Round Robin Scheduling:

Round Robin is a CPU scheduling algorithm where each process is

cyclically assigned a fixed time slot. It is the preemptive version of First come

First Serve CPU Scheduling algorithm. Round Robin CPU Algorithm generally

focuses on Time Sharing technique.

Characteristics:

 It’s simple, easy to use, and starvation-free as all processes get the

balanced CPU allocation.

 One of the most widely used methods in CPU scheduling as a core.

 It is considered preemptive as the processes are given to the CPU for a

very limited time.

Advantages:

 Round robin seems to be fair as every process gets an equal share of CPU.

 The newly created process is added to the end of the ready queue.

6. Shortest Remaining Time First Scheduling (SRTF):

SRTF is the preemptive version of the Shortest job first which we have

discussed earlier where the processor is allocated to the job closest to

completion. In SRTF the process with the smallest amount of time remaining

until completion is selected to execute.

Characteristics:

 SRTF algorithm makes the processing of the jobs faster than SJF

algorithm, given it’s overhead charges are not counted.

 The context switch is done a lot more times in SRTF than in SJF and

consumes the CPU’s valuable time for processing. This adds up to its

processing time and diminishes its advantage of fast processing.

Advantages:

 In SRTF the short processes are handled very fast.

 The system also requires very little overhead since it only makes a

decision when a process completes or a new process is added.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 21

Disadvantages:

 Like the shortest job first, it also has the potential for process starvation.

 Long processes may be held off indefinitely if short processes are

continually added.

7. Longest Remaining Time First:

The longest remaining time first is a preemptive version of the longest

job first scheduling algorithm. This scheduling algorithm is used by the

operating system to program incoming processes for use in a systematic way.

This algorithm schedules those processes first which have the longest processing

time remaining for completion.

Characteristics:

 Among all the processes waiting in a waiting queue, the CPU is always

assigned to the process having the largest burst time.

 If two processes have the same burst time then the tie is broken

using FCFS i.e. the process that arrived first is processed first.

 LJF CPU Scheduling can be of both preemptive and non-preemptive

types.

Advantages:

 No other process can execute until the longest task executes completely.

 All the jobs or processes finish at the same time approximately.

Disadvantages:

 This algorithm gives a very high average waiting time and average turn-

around time for a given set of processes.

 This may lead to a convoy effect.

8. Highest Response Ratio Next:

Highest Response Ratio Next is a non-preemptive CPU Scheduling

algorithm and it is considered as one of the most optimal scheduling algorithms.

The name itself states that we need to find the response ratio of all available

processes and select the one with the highest Response Ratio. A process once

selected will run till completion.

Characteristics:

 The criteria for HRRN is Response Ratio and the mode is Non

Preemptive.

 HRRN is considered as the modification of Shortest Job First to reduce

the problem of starvation.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 22

 In comparison with SJF, during the HRRN scheduling algorithm, the CPU

is allotted to the next process which has the highest response ratio and

not to the process having less burst time.

 Response Ratio = (W + S)/S

Here, W - Waiting time of the process

 S - Burst time of the process.

Advantages:

 HRRN Scheduling algorithm generally gives better performance than

the shortest job first Scheduling.

 There is a reduction in waiting time for longer jobs and also it encourages

shorter jobs.

Disadvantages:

 The implementation of HRRN scheduling is not possible as it is not

possible to know the burst time of every job in advance.

 In this scheduling, there may occur an overload on the CPU.

9. Multiple Queue Scheduling:

Processes in the ready queue can be divided into different classes where

each class has its own scheduling needs. For example, a common division is

a foreground (interactive) process and a background (batch) process. These

two classes have different scheduling needs. For this kind of situation Multilevel

Queue Scheduling is used.

The description of the processes in the above diagram is as follows:

 System Processes: The CPU itself has its process to run, generally termed

as System Process.

 Interactive Processes: An Interactive Process is a type of process in

which there should be the same type of interaction.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 23

 Batch Processes: Batch processing is generally a technique in the

Operating system that collects the programs and data together in the form

of a batch before the processing starts.

Advantages:

 The main merit of the multilevel queue is that it has a low scheduling

overhead.

Disadvantages:

 Starvation problem

 It is inflexible in nature

10. Multilevel Feedback Queue Scheduling:

Multilevel Feedback Queue Scheduling (MLFQ) CPU Scheduling is

like Multilevel Queue Scheduling but in this process can move between the

queues. And thus, much more efficient than multilevel queue scheduling.

Characteristics:

 In a multilevel queue-scheduling algorithm, processes are permanently

assigned to a queue on entry to the system, and processes are not allowed

to move between queues.

 As the processes are permanently assigned to the queue, this setup has the

advantage of low scheduling overhead,

 But on the other hand disadvantage of being inflexible.

Advantages:

 It is more flexible

 It allows different processes to move between different queues

Disadvantages:

 It also produces CPU overheads

 It is the most complex algorithm.

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 24

Comparison between various CPU Scheduling algorithms

Here is a brief comparison between different CPU scheduling algorithms:

Algorithm Allocation is Complexity

Average

waiting time

(AWT)

Pre

emp

tion

 Star

vatio

n

Performa

nce

FCFS

According to the

arrival time of the

processes, the CPU

is allocated.

Simple and

easy to

implement

Large. No No Slow

SJF

Based on the lowest

CPU burst time

 (BT).

More

complex

than FCFS

Smaller than

FCFS
 No Yes Good

SRTF

Same as SJF the

allocation of the

CPU is based on the

lowest CPU burst

time (BT). But it is

preemptive.

More

complex

than FCFS

Depending

on arrival

time, process

size

Yes Yes Good

RR

According to the

order of the process

arrives with fixed

time quantum (TQ)

The

complexity

depends on

TQ

Large than

SJF and

Priority

scheduling.

 Yes

No Fair

Priority

Pre-

emptive

According to the

priority. The bigger

priority task

executes first

Less

complex

Smaller than

FCFS
Yes Yes Well

Priority

non-

preemp

tive

According to the

priority with

monitoring the new

incoming higher

priority jobs

Less

complex

than Priority

preemptive

Smaller than

FCFS
 No Yes

Most

beneficial

with

batch

systems

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 25

Algorithm Allocation is Complexity

Average

waiting time

(AWT)

Pre

emp

tion

 Star

vatio

n

Performa

nce

MLQ

According to the

process that resides

in the bigger queue

priority

More

complex

than the

priority

Smaller than

FCFS
 No Yes Good

MLFQ

According to the

process of a bigger

priority queue.

It is the most

Complex

Smaller than

all

scheduling

 No No Good

Example 1 (FCFS)

1. Process ID Process Name Burst Time (ms)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

P 1 A 6

P 2 B 2

P 3 C 1

P 4 D 9

P 5 E 8

Gantt Chart

Process

ID

Arrival

Time

(ms)

Burst

Time

(ms)

Completion

Time (ms)

Turn Around

Time (ms)

Waiting

Time

(ns)

P 1 0 6 6 6 0

P 2 2 2 8 8 6

P 3 3 1 9 9 8

P4 4 9 18 18 9

P 5 5 8 26 26 18

Average Turn Around Time = (6 + 8 + 9 +18 +26) / 5 = 67 / 5 = 13.4 ms

Average Waiting Time = (0 + 6 + 8 + 9 + 18) / 5 = 41 / 5 = 8.2 ms

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 26

Example 2 (FCFS)

ProcessID Process Name Burst Time

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 P 1 A 79

 P 2 B 2

 P 3 C 3

 P 4 D 1

 P 5 E 25

 P 6 F 3

Process

Id

Burst

Time (BT)

Completion

Time (CT)

Turn

Around

Time (TAT)

Waiting

Time (WT)

P 1 79 79 79 0

P 2 2 81 81 79

P 3 3 84 84 81

P 4 1 85 85 84

P 5 25 110 110 85

P 6 3 113 113 110

Avg Waiting Time = (0 + 79 + 81 + 84 + 85 + 110) /6 = 73.17 ms

Avg Turn Around Time = (79 + 81 + 84 + 85 + 110 +113) / 6 = 92 ms

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 27

Example 3 (SJF)

Process ID Arrival Time Burst Time

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

P0 1 3

P1 2 6

P2 1 2

P3 3 7

P4 2 4

P5 5 5

Non Pre-Emptive Shortest Job First CPU Scheduling

Gantt Chart:

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn

Around

Time
TAT=CT–AT

Waiting

Time
WT=CT–BT

P0 1 3 5 4 1

P1 2 6 20 18 12

P2 0 2 2 2 0

P3 3 7 27 24 17

P4 2 4 9 7 4

P5 5 5 14 10 5

Average Waiting Time = (1 + 12 + 17 + 0 + 5 + 4) / 6 = 39 / 6 = 6.5 ms

Average Turn Around Time = (4 +18 + 2 +24 + 7 + 10) / 6 = 65 / 6 = 10.83 ms

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 28

Pre Emptive Shortest Job First CPU Scheduling

Gantt chart:

Proce

ss ID

Arrival

Time

Burst

Time

Comple

tion

Time

Turn Around Time

TAT=CT-AT

Waiting

Time

WT=CT–BT

P0 1 3 5 4 1

P1 2 6 17 15 9

P2 0 2 2 2 0

P3 3 7 24 21 14

P4 2 4 11 9 5

P5 6 2 8 2 0

Average Turn Around Time = (4 +15 + 2 + 21 + 9 + 2) / 6 = 53 / 6 = 8.83 ms

Average Waiting Time = (1 + 9 + 0 + 14 + 5 + 0) /6 = 29 / 6 = 4.83 ms

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 29

Example 4 (PRIORITY)

S. No Process ID Arrival Time Burst Time Priority

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 P 1 0 5 5

2 P 2 1 6 4

3 P 3 2 2 0

4 P 4 3 1 2

5 P 5 4 7 1

6 P 6 4 6 3

(5 has the least priority and 0 has the highest priority)

Solution:

Gantt Chart:

Process

Id

Arrival

Time

Burst

Time

Priority Completion

Time

Turn Around

Time
TAT=CT-AT

Waiting

Time
WT=TAT-BT

P 1 0 5 5 5 5 0

P 2 1 6 4 27 26 20

P 3 2 2 0 7 5 3

P 4 3 1 2 15 12 11

P 5 4 7 1 14 10 3

P 6 4 6 3 21 17 11

Avg Waiting Time = (0 + 20 + 3 + 11 + 3 + 11) / 6 = 48 / 6 = 8 ms

Avg Turn Around Time = (5 + 26 + 5 + 11 + 10 + 17) / 6 = 74 / 6 = 12.33 ms

UNIT – II CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 30

Example 5 (Round Robin)

Time Quantum = 1 ms

Process ID Arrival Time Burst Time

P0 1 3

P1 0 5

P2 3 2

P3 4 3

P4 2 1

Solution:

Gantt Chart:

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn

Around

Time

Waiting

Time

P0 1 3 5 4 1

P1 0 5 14 14 9

P2 3 2 7 4 2

P3 4 3 10 6 3

P4 2 1 3 1 0

Avg Turn Around Time = (4+14+4+6+1) / 5 = 5.8 ms

Avg Waiting Time = (1+9+2+3+0) / 5 = 3 ms

